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Abstract

In this paper, we address the problem of rain removal

from videos by proposing a more comprehensive framework

that considers the additional degradation factors in real

scenes neglected in previous works. The proposed frame-

work is built upon a two-stage recurrent network with dual-

level flow regularizations to perform the inverse recovery

process of the rain synthesis model for video deraining. The

rain-free frame is estimated from the single rain frame at the

first stage. It is then taken as guidance along with previous-

ly recovered clean frames to help obtain a more accurate

clean frame at the second stage. This two-step architecture

is capable of extracting more reliable motion information

from the initially estimated rain-free frame at the first stage

for better frame alignment and motion modeling at the sec-

ond stage. Furthermore, to keep the motion consistency be-

tween frames that facilitates a frame-consistent deraining

model at the second stage, a dual-level flow based regular-

ization is proposed at both coarse flow and fine pixel levels.

To better train and evaluate the proposed video deraining

network, a novel rain synthesis model is developed to pro-

duce more visually authentic paired training and evalua-

tion videos. Extensive experiments on a series of synthetic

and real videos verify not only the superiority of the pro-

posed method over state-of-the-art but also the effectiveness

of network design and its each component.

1. Introduction

Rain, as a most common bad weather condition, will

cause the visibility degradation in captured videos, e.g. con-

tent changes and detail loss, which may fail well-built out-

door computer vision systems by default taking clean video

frames as input. For example, rain streaks cause intensi-

ty fluctuation of image content, obstruct the background

to some extent, and blur the scene. Rain will also result
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(a) Rain Frame (b) SpacCNN [7]

(c) FastDeRain [24] (d) Proposed

Figure 1. Visual results of different deraining methods. Compared

with FastDeRain [24] and SpacCNN [7], our method is better at re-

moving rain accumulation and accumulation flow (blue box) with

less detail loss (red box).

in occlusion, with no background signals through the rain-

drop. Another degradation factor due to rain is accumula-

tion, where distant streaks are overlapped to look like mis-

t or fog, which obscures the background and significantly

reduces the visibility of distant scenes. When the amount

of rainfall changes rapidly in a local area, rain accumula-

tion fluctuates and leads to visual degradation like a layer

of flowing veils covering on the rain-free background as

shown in Fig. 2 (c) and the blue box in Fig. 1, which is

called accumulation flow in this work. Compared to normal

accumulation, the behavior of accumulation flow is more

dynamic. Besides static scene transmission, it is also affect-

ed by local rain density and atmospheric flow, which makes

its estimation much challenging. Furthermore, the accumu-

lation flow possesses complex local motion patterns, which

hinders both human perception as well as vision applica-

tions, and increases the difficulty to model and handle it.

A lot of research efforts have been dedicated to rain im-

age/video restoration. Some works [25, 21, 42, 36] take

a single rain image as input and separate rain streaks and
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rain-free images (non-rain images) based on texture appear-

ances. Frequency domain representation [25], sparse rep-

resentation [36], Gaussian mixture model [31] and deep

networks [53, 14] are adopted as basic models to dif-

ferentiate rain streaks and rain-free images. Besides the

above single image-based approaches, video-based method-

s [1, 2, 3, 8, 12, 16, 18, 19, 58] solve the problem by exploit-

ing both spatial and temporal context. Some [18, 16, 19]

leverage the physical aspects of rain, such as its directional

and chromatic properties. Others [8, 6, 27, 24] further uti-

lize temporal dynamics, including continuity of background

motions, random occurrence of streaks in video frames, and

explicit motion cues, to facilitate video rain removal.

Recently, the rapid development of deep networks also

leads to the blooming of deep learning-based and video im-

age processing, including denoising [57], JPEG artifacts re-

moval [9, 59], interpolation [52], super-resolution [10, 55,

51, 50], video compression [20, 48, 32], and single-image

rain removal [15, 37, 54], etc. Likewise, deep learning also

brings new progress to video rain removal. In [29], a mul-

tiscale convolutional sparse coding is proposed for video

rain streak removal. Chen et al. [7] propose to first seg-

ment a rain image into superpixels, on which a consisten-

cy constraint is imposed, and then compensate for the lost

details in the aligned superpixels. In [33, 34], a recurrent

network is built to jointly perform rain degradation classifi-

cation, rain removal and background detail reconstruction.

These previous methods achieve good performance in

some cases. However, to our best knowledge, they all fo-

cus on one or two of the rain degradation factors, and most

of them only consider rain streak removal. Some other rain

degradation factors for vision tasks in videos are rarely con-

sidered, such as rain accumulation flow as shown in Fig. 2

(c) and the blue box in Fig. 1. Furthermore, it is not fully

explored how to utilize intra-frame and inter-frame context

to facilitate joint estimation of multiple rain-related factors.

Besides, in real rain scenes, the motions of objects and re-

gions are interweaved. Their inferences are disturbed by the

multiple degradation factors and their mixture effects. It re-

mains unclear how to describe motion information at both

pixel and region levels and model the motion patterns of the

rain-free frames robustly and accurately.

Based on the above observations, we solve the problem

of video rain removal more comprehensively by consider-

ing rain streak, accumulation, rain accumulation flow and

occlusion. A two-stage recurrent network is designed and

a novel video rain synthesis model is built for synthesizing

visually authentic rain videos with various rain types. The

proposed recurrent network estimates the rain-free frame by

two stages. At the first stage, the model recovers a rain-free

frame roughly from a single rain frame. Then, based on this

estimation and preceding recovered clean frames, a more

accurate estimation for the clean frame is inferred at the

second stage by using the temporal context information. We

also place two types of flow-based orthogonal constraints at

the second stage to regularize the model learning at both

pixel and region-levels, which makes our results more tem-

porally continuous and regionally consistent, and facilitates

a frame-consistent method.

In summary, our contributions are as follows.

• We develop a new rain synthesis model that in-

cludes several visual degradation factors, namely rain

streak, accumulation, accumulation flow and occlu-

sion. Based on this model, we synthesize a new rain

video dataset, corresponding to light and heavy rain

condition respectively, to support development and e-

valuation of data-driven video rain removal methods.

• We build a recurrent network (RNN) to predict the

rain-related variables in our novel rain synthesis mod-

el, and to estimate the rain-free frame to perform an in-

verse process based on these predicted variables. The

injection of the inverse recovery module makes our

network more effective.

• Our RNN has a two-stage architecture which fully

makes use of the potential of single-frame and multi-

frame context. It is capable of extracting more reli-

able motion information based on the initially estimat-

ed rain-free frame as guidance for alignment and mo-

tion modeling at the second stage.

• To better capture the motion patterns and keep inter-

frame consistency, we employ two types of flow-based

representations to regularize the learning of our video

deraining network at both coarse flow and fine levels.

2. Related Work

Single image deraining is a highly ill-posed problem.

To address it, many models and priors are used to perfor-

m signal separation and texture classification. These mod-

els include sparse coding [25], generalized low rank mod-

el [8], nonlocal mean filter [26], discriminative sparse cod-

ing [36], Gaussian mixture model [31], rain direction pri-

or [56], transformed low rank model [5]. The presence of

deep learning has promoted the development of single im-

age deraining. In [14, 13], deep networks take the image de-

tail layer as their input. Yang et al. [53] propose a deep join-

t rain detection and removal method to remove heavy rain

streaks and accumulation. In [56], a novel density-aware

multi-stream densely connected CNN is proposed for joint

rain density estimation and removal. Wang et al. [45] de-

velop a perceptual generative adversarial network to apply

the translation from rainy images to clean ones.

Video rain removal can additionally make use of the

temporal context and motion information. Garg and Na-

yar are the first to focus on rain modeling [18] and re-

moval [16, 19, 17]. Later works formulate rain streaks
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(a) (b) (c) (d)

Figure 2. Different types of visibility degradation due to rain. (a)

Rain streaks. (b) Rain accumulation. (c) Rain accumulation flow.

Due to the atmosphere flow, the density of the veiling layers at the

same location of two frames changes. (d) Rain occlusion. The

occlusion regions present an identical intensity.

with more flexible and intrinsic characteristics, including

temporal and chromatic properties of rain [58, 35], Fouri-

er domain feature [1], phase congruency features [40], the

size, shape and orientation of rain streaks [3, 2], spatio-

temporal correlation of local patches [8], and overall di-

rectional tendency of rain streaks [24]. The presence of

learning-based method, with improved modeling capacity,

brings new progress. Chen et al. [6] propose to embed mo-

tion segmentation by a Gaussian mixture model into rain

detection and removal. Tripathi et al. [43, 44] train a Bayes

rain detector based on spatial and temporal features. In [27],

Kim et al. train an SVM to refine the roughly detected rain

maps. Wei et al. [47] encode rain streaks as patch-based

mixtures of Gaussian, which is capable of finely adapting a

wider range of rain variations. In [39], a matrix decom-

position model is used to divide rain streaks into sparse

and dense ones. In [29], a multiscale convolutional sparse

coding method is proposed for video rain streak removal.

Chen at al. [7] propose to first segment a rain image in-

to superpixel and then enforce the consistency constraints

and compensate for lost details on these aligned superpix-

els. In [33], a recurrent network is built to seamlessly inte-

grate rain degradation classification, rain removal and back-

ground details reconstruction. Comparatively, in our work,

we aim to handle more types of visibility degradation via

our proposed rain synthesis model. To better jointly utilize

intra-frame and inter-frame context, we design a two-step

RNN for video deraining. To better model motion patterns

and keep inter-frame consistency at different granularities,

we propose to apply dual-level flow constraints to regularize

the model learning.

3. Comprehensive Rain Synthesis Model

To address rain removal problem more comprehensive-

ly, we propose a novel comprehensive rain synthesis model

to facilitate the research on this topic. The rain images are

synthesized from clean ones considering four degradation

factors as below and tries to simulate the corresponding ef-

fects.

Rain Streaks. The fast falling raindrops in the focus of

a camera will obstruct the background to some extent, as

(a) Rain-Free Frame (b) Synthesized Rain Frame

Figure 3. Examples of our synthesis data based on Eqn. (4).

shown in Fig. 2 (a). To synthesize similar effects, they are

combined with clean rain-free frames by linear addition-

s [53, 14, 31].

Rain Accumulation. The rain streaks in the distant are in-

terweaved to produce atmospheric veiling effects [53, 30],

as shown in Fig. 2 (b). In our synthesis model, the back-

ground signals are scattered out to degrade the visibility.

Rain Accumulation Flow. The out-of-focus raindrops (or

flowing rain accumulation) form rain accumulation flow as

proposed in this work, as shown in Fig. 2 (c). Its degree

of transparency is not correlated to the background depth,

and it can take any shape and make semi-transparent veiling

effects. Its presence in the temporal domain is continuous.

It will be added to rain streak contaminated images like a

veil.

Rain Occlusion. In moderate or heavy rain, the light trans-

mittance of raindrops becomes low and the rain region has

identical intensities [33]. In this case, the background infor-

mation is totally lost, as shown in Fig. 2 (d). It is generated

by an alpha matting process based on a binary mask, with

rain-contaminated images and given intensity maps.

We formulate our comprehensive rain synthesis model s-

tarting from the simplest case of a widely used single-frame

rain model [31, 36, 22]:

O = B+ S, (1)

where B is the rain-free frame without rain streaks, and S

is the rain streak frame. O is the captured image with rain

streaks. A video rain synthesis model is obtained with a

temporal indicator t added:

Ot = Bt + St, t = 1, 2, ..., N, (2)

where t and N denote the current time-step and the total

number of video frames, respectively. Rain streaks St are

assumed to be independent identically distributed random

samples [41]. Their locations across the frames are assumed

uncorrelated. Considering rain accumulation and accumu-

lation flow, Eqn. (2) is further extended as follows:

Ot = βtBt + (1− βt)At +Ut + St, t = 1, 2, ..., N, (3)
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Figure 4. Framework of our two-stage recurrent network for video deraining. The SF-DerainNet takes single-frame rain input and outputs

four rain-related variables. Inverse recovery module converts these predicted rain-related variables into the estimated rain-free frame

following the inverse recovery of Eqns. (3) and (4). Multi-frame alignment network estimates the optical-flow among frames and aligns

previous frames to the current one. After that, MF-DerainNet takes the multi-frame rain input and their clean estimations to predict the

residual rain-related variables. These variables are further combined with the variables estimated from the single frame to eventually

produce the final estimation of the rain-free frame. The whole model is trained end-to-end with the losses for variable prediction, rain-free

frame recovery, inter-frame consistency, and motion accuracy. Best viewed in color.

where At is the global atmospheric light, βt is the at-

mospheric transmission which is correlated with the scene

depth, and Ut is the rain accumulation flow layer which

is decided by the local raindrop density and atmospheric

flow. They are assumed temporally continuous. Given a

fixed scene, {At} and {αt} are only affected by camera

motions. {Ut} has its own motion trajectory. Finally, we

make the rain model capable of describing occlusion by

Õt = (1− αt)Ot + αtMt, (4)

where Ot is defined in Eqn. (3), Mt is the rain reliance map

and αt is an alpha matting map.

Based on this comprehensive rain synthesis model (4),

we can simulate realistic-looking rain videos. Two synthe-

sized examples are shown in Fig. 3. In our work, we build

a new video rain dataset with such a synthesis model. More

details are provided in Sec. 5.

4. Frame-Consistent Deraining Network

4.1. Design Methodology

Our framework is built with the following design

methodology. First, our method strictly follows the in-

verse recovery process of Eqns. (3) and (4), which is very

tractable. Second, our method adopts a two-step frame-

work, which fully utilizes the benefits of single-frame and

multi-frame context. The single-frame derained results are

taken as guidance for multi-frame deraining, which fa-

cilitates more accurate motion estimation and alignment.

Third, two complementary constraints, pixel-level fine flow

and region-level regularized flow constraints, are utilized

to regularize the learning of our video deraining network.

They jointly make the motion patterns of our results more

accurate and consistent across frames.

4.2. Network Architecture

Our framework consists of fives modules: single-frame

deraining network (SF-DerainNet), multi-frame align-

ment network (MF-AlignNet), multi-frame deraining net-

work (MF-DerainNet), Inverse Recovery Module, and

Loss Function, as shown in Fig. 4. It performs multi-

frame rain removal by two steps. First, the SF-DerainNet

is utilized to estimate the rain-related variables in Eqns. (3)

and (4). Then, the inverse recovery module takes the rain-

related variables as its input and estimates the rain-free

frame by calculating the inverse recovery process in Eqn-

s. (3) and (4). Then, based on the estimated rain-free frame

B
s
t at time-step t from SF-DerainNet, and B

M
t−1 at time-step

(t− 1) from MF-DerainNet, we estimate the optical flow at

time-step t. We use this flow to warp Ot−1 and B
M
t−1 to get

O
F
t−1 and B

M,F
t−1 by aligning them to Ot and Bt, respec-

tively. After that, MF-DerainNet extracts features from the

input
[
B

S
t ,B

M,F
t−1

]
and

[
Õ

S
t , Õ

F
t−1

]
, and then concatenates

and transforms these features into the rain-related variables,

which are further fed into the inverse recovery module to

obtain the final estimation B
M,F
t . Multiples losses are used

to jointly constrain the recovery of B
M,F
t to predict rain-

free frames accurately and keep the inter-frame consistency.

Single-Frame Deraining Network. As shown in Fig. 4,

SF-DerainNet takes a U-Net-like architecture. It transforms
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the features by multiple convolutional layers progressive-

ly. In intermediate layers, the spatial resolutions of features

are first down-sampled (encoder) and then up-sampled (de-

coder). There are residual connections (denoted by red) to

connect the features with the same spatial resolution within

the encoder (or decoder), which help local information con-

tained in the features generated by shallow layers reach the

output. There are also skip connections (denoted by blue)

to link the features with the same spatial resolution from en-

coder to decoder. The spatial resolution change is achieved

by stride convolution and deconvolution in SF-DerainNet.

The SF-DerainNet outputs four rain-related variables. We

use GSF(·) to represent the process of SF-DerainNet:

v̂
S
t =

[
Ŝ
S
t , Û

S
t , β̂

S
t , R̂

S
t

]
= GSF

(
Ôt

)
, (5)

where Ŝ
S
t , ÛS

t , β̂S
t , and R̂

S
t are rain streak, rain accumu-

lation flow, atmospheric transmission and residue estimated

from the single frame. The last term tries to remedy the

effects of rain occlusion and the estimation errors of other

terms.

Inverse Recovery Module. Given Ŝ
S
t , ÛS

t , β̂S
t , and R̂

S
t ,

we follow the inverse solution of Eqn. (3) to get the estima-

tion of the clean background frame B̂
S
t based on a single

frame rain input:

B̂
S
t =

Ôt − Û
S
t − Ŝ

S
t −

(
1− β̂S

t

)
× Ât

max
(
β̂S
t , ǫ

) + R̂
S
t , (6)

where ǫ is a threshold to guarantee the numerical reason-

ability, which is set to 0.1 [38].

Multi-Frame Alignment Network. At time-step t, we esti-

mate the (t−1)-th rain-free frame B̂M
t−1 from previous rain

frames. Then, we estimate the optical flow ut = [ut,x,ut,y]

between B̂
M
t−1 and B̂

S
t by FlowNet [11]. We use GFlow (·)

and GWarp (·) to denote the process of optical flow calcula-

tion and warping operation based on the flow:

ut = GFlow

(
B̂

M
t−1, B̂

S
t

)
, (7)

B̂
M,F
t−1 = GWarp

(
B̂

M
t−1, ût

)
, (8)

Ô
F
t−1 = GWarp

(
Ôt−1, ût

)
. (9)

Then, the locations of the pixels in rain inputs are aligned,

and the successive MF-DerainNet is capable of removing

rain more effectively.

Multi-Frame Deraining Network. The MF-DerainNet

takes as input
[
B̂

S
t , B̂

M,F
t−1

]
and

[
Õ

S
t , Õ

F
t−1

]
and predicts

the rain-related variables. It uses a similar architecture to

SF-DerainNet. Differently, there are two branches at the

encoder side. Features are extracted from
[
B̂

S
t , B̂

M,F
t−1

]
and

Opt-Fine
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Figure 5. The dual-level flow constraint deduced from Eqn. (17).[
∂B(p)
∂x

,
∂B(p)
∂y

,
∂B(p)

∂t

]
and u = (ux,uy) provide pixel and

region-level regularization. Best viewed in color.

[
Õ

S
t , Õ

F
t−1

]
, respectively, and concatenated before down-

sampling to the smallest spatial resolution. The skip con-

nections are built to connect the corresponding features

from the branch taking as input the estimated clean frames

to the decoder side. At the end of the convolutional layers

which have the smallest scales at the decoder side, we use

a convolutional LSTM to propagate the information at the

feature level across frames. Here, we utilize a residual task

learning method. We use GMF(·) to express the process of

MF-DerainNet:

∆v̂
M
t = GMF

(
B̂

S
t , B̂

M,F
t−1 , Õt, Õ

F
t−1

)
, (10)

v̂
M
t = ∆v̂

M
t + v̂

S
t . (11)

After getting v̂
M
t =

[
Ŝ
M
t , ÛM

t , β̂M
t , R̂M

t

]
, we put it into

the inverse recovery module to obtain the rain-free frame

B̂
M
t .

Loss Function. We train our network in an end-to-end man-

ner. The loss function consists of six terms:

Lall = LM
Rect + LM

Var + LS
Rect + LS

Var (12)

+ LM
Opt-Reg + LM

Opt-Fine, (13)

LS
Rect =

∥∥∥B̂S
t −Bt

∥∥∥
2

2
, (14)

LS
Var =

∥∥v̂S
t − vt

∥∥2
2
. (15)

The same applies to LM
Rect and LM

Var. LM
Opt-Reg and LM

Opt-Fine

are the losses measured by coarse flow consistency and fine

flow orthogonal feature.

4.3. Dual­Level Flow Constraints

To generate more temporally continuous and regionally

consistent videos, we employ two types of constraints for

network training, fine flow constraint and regularized flow

constraint, which are first proposed by this work.

Brightness Constant Constraint. We first review the

brightness constant constraint used in the traditional opti-

cal flow:

B(x, y, t) = B(x+∆x, y +∆y, t+∆t), (16)

where B(x, y, t) denotes the pixel at the location (x, y) of a

frame at time t. For frames t and (t+∆t), ∆x and ∆y are
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Table 1. PSNR and SSIM results among different rain streak removal methods on RainSynLight25, RainSynComplex25, and NTURain.

Best results are denoted in red and the second best results are denoted in blue.
Dataset Metric DetailNet TCLRM JORDER MS-CSC DSC SE FastDerain J4RNet SpacCNN Proposed

RainSynLight25
PSNR 25.72 28.77 30.37 25.58 25.63 26.56 29.42 32.96 32.78 35.80

SSIM 0.8572 0.8693 0.9235 0.8089 0.8328 0.8006 0.8683 0.9434 0.9239 0.9622

RainSynHeavy25
PSNR 16.50 17.31 20.20 16.96 17.33 16.76 19.25 24.13 21.21 27.72

SSIM 0.5441 0.4956 0.6335 0.5049 0.5036 0.5293 0.5385 0.7163 0.5854 0.8239

NTURain
PSNR 30.13 29.98 32.61 27.31 29.20 25.73 30.32 32.14 33.11 36.05

SSIM 0.9220 0.9199 0.9482 0.7870 0.9137 0.7614 0.9262 0.9480 0.9474 0.9676

Table 2. PSNR and SSIM results among different rain removal methods on RainSynAll100. † and ‡ denote using ST-MRF and EVD-Net

as pre/post-processing, respectively. Best results are denoted in red and the second best results are denoted in blue.

Metric †FastDeRain FastDeRain† SpacCNN†F †SpacCNN †MS-CSC MS-CSC† †SE SE† J4RNet-E Rain Input

PSNR 19.46 19.40 18.39 19.16 17.81 17.82 17.41 17.58 20.31 12.01

SSIM 0.6875 0.7322 0.7131 0.7214 0.6264 0.6211 0.6213 0.6245 0.6324 0.5739

Metric ‡FastDeRain FastDeRain‡ SpacCNN‡F ‡SpacCNN ‡MS-CSC MS-CSC‡ ‡SE SE‡ J4RNet-P Proposed

PSNR 18.55 18.78 17.93 17.94 16.92 16.92 17.67 17.89 22.93 25.72

SSIM 0.7161 0.7351 0.7259 0.7270 0.6354 0.6346 0.6200 0.6278 0.7746 0.8989

the spatial pixel displacements along x and y axes, respec-

tively. We can approximate Eqn. (16) with a Taylor series:

∂B(p)

∂x
ux +

∂B(p)

∂y
uy +

∂B(p)

∂t
= 0, (17)

where p = (x, y, t) and u = (ux,uy) denote the two

dimensional velocity of point p, respectively.
∂B(p)
∂x

and
∂B(p)
∂y

are the spatial gradients of ∂B(p) along x and y ax-

es respectively.
∂B(p)
∂t

is the temporal gradient along the

time axis. From Eqn. (17), we get two types of flow-related

representations:
[
∂B(p)
∂x

,
∂B(p)
∂y

,
∂B(p)
∂t

]
and u = (ux,uy),

helping our network capture motion clues and keep tempo-

ral consistency at pixel and region-levels jointly.

Fine Flow Constraint.
[
∂B(p)
∂x

,
∂B(p)
∂y

,
∂B(p)
∂t

]
contains the

full motion information among frames. It is a pixel-level

feature that is directly calculated from the input frames. The

feature may not be robust enough, e.g. disturbed by rain

streaks and small occlusion, and may fail to capture mo-

tion patterns at the region or object level. With these con-

siderations, following the process of extracting the feature

GOpt-Fine(·), we build a fine flow constraint to guide the net-

work to recover the accurate pixel motions:

LM
Opt-Fine =

∥∥∥GOpt-Fine(B̂
M
t−1, B̂

M
t )−GOpt-Fine (Bt−1,Bt)

∥∥∥
2

2
.

Regularized Flow Constraint. The optical flow u is a

more abstract feature. It cannot be directly calculated from

the inputs and needs to be solved with other imposed con-

straints. After estimated and refined with priors, the optical

flow is consistent within regions and objects, while some

motion details are smoothed. Hence, it is not a pixel-level

feature but can be used as an effective description for region

and object motions. In our work, we use optical flow to reg-

ularize feature learning, making the motion patterns of the

estimated results more region-consistent:

LM
Opt-Reg =

∥∥∥GFlow

(
B̂

M
t−1, B̂

M
t

)
−GFlow (Bt−1,Bt)

∥∥∥
2

2
.

With fine flow constraint and regularized flow constraint,

our network is capable of capturing motion trajectories and

patterns at both pixel-level and region-level.

5. Experimental Results

Datasets. We compare our model with state-of-the-arts

on five benchmark datasets. RainSynLight25 and RainSyn-

Complex25 are proposed in [33] with light and heavy rain

streaks respectively. NTURain [7] has two sub-groups: one

taken from a panning and unstable camera with slow move-

ments, and the other from a fast moving car-mount camera.

RainSynAll100 is synthesized by 1,000 non-rain sequences

with all degradation factors illustrated in Sec. 3. The non-

rain sequences are sampled from Vimeo-90K Dataset [49].

The whole dataset is split into training and testing dataset-

s, including 900 and 100 video sequences, respectively.

Practical rain video sequences are collected from practical

scenes from Youtube website1, GIPHY2 and movie clips.

More information about training data, implementation de-

tails, and video comparison results are provided in the on-

line supplementary material3.

Baselines. We compare D3R-Net with state-of-the-

art methods: discriminative sparse coding (DSC) [36],

layer priors (LP) [31], joint rain detection and re-

moval (JORDER) [53], deep detail network (Detail-

Net) [14], stochastic encoding (SE) [47], temporal correla-

tion and low-rank matrix completion (TCLRM) [27], Fast-

DeRain [24], joint recurrent rain removal and reconstruc-

tion (J4RNet) [33], superpixel alignment and compensation

CNN (SpacCNN) [7]. DSC, LP, JORDER and DetailNet

1https://www.youtube.com/
2https://giphy.com/
3https://github.com/flyywh/Dual-FLow-Video-Deraining-CVPR-2019
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(a) Rain Frame (b) SE (c) TCLRM (d) FastDeRain (e) J4R (f) SpacCNN (g) Proposed

Figure 6. Results of rain removal methods on synthesized datasets. Top panel: the results on RainSynComplex25. Bottom panel: the results

on RainSynAll100. Best viewed in color.

(a) Input (b) SE (c) MS-CSC (d) TCLRM (e) FastDeRain (f) SpacCNN (g) Proposed

Figure 7. Results of rain removal methods on real images. Best viewed in color.

are single frame deraining methods. SE, TCLRM, Fast-

Derain, J4RNet, and SpacCNN are multi-frame derainig

methods. JORDER, DetailNet, J4RNet and SpacCNN are

deep-learning based methods. When performing evalua-

tions on RainSynAll100, for the methods without rain ac-

cumulation removal, end-to-end united video dehazing and

detection network (EVD-Net) [28] and spatio-temporal M-

RF dehazing [4] are used to perform pre-processing or post-

processing. For the experiments on synthesized data, Peak

Signal-to-Noise Ratio (PSNR) [23] and Structure Similarity

Index (SSIM) [46] are used as comparison criteria. Follow-

ing previous works, we evaluate the results only in the lumi-

nance channel, since human visual system is more sensitive

to luminance than chrominance information.

Objective Evaluation. We compare our method on dataset-

s with only rain streak degradation in Table 1. Our method

shows significant superiority to previous methods. Com-

pared to J4RNet and SpacCNN, our method achieves more

than 2.8 dB on 3.5 dB gains on RainSynLight25 and Rain-

SynHeavy25. We also evaluate all methods on our synthe-

sized rain dataset RainSynAll100. For a fair comparison,

FastDerain, SpacCNN and MS-CSC are evaluated with two

state-of-the-art dehazing methods, ST-MRF [4] and EVD-

Net [28], as pre/post-processing to remove rain accumu-

lation. In Table 2, †FastDerain denotes using the sequen-

tial combination of ST-MRF and FastDeRain for rain re-

moval. FastDerain† utilizes ST-MRF as post-processing.
‡FastDerain and FastDerain‡ utilize EVD-Net as pre/post-

processing, respectively. The same applies to other com-

pared methods. J4RNet-E applies the method in [33] to di-

rectly predict the rain-free frame based on the input rain

frame. J4RNet-P incorporates the inverse recovery module

to first predict the rain-related variables and then infer the

rain-free frame based on these predicted variables. As is

observed in Table 2, our method achieves the best perfor-

mance. The performance gain is up to 2.5dB in PSNR and
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Table 3. Running time of different methods (in sec) to remove rain

in a video with the spatial resolution 832× 512 per frame.
Baseline DetailNet JORDER SE FastDeRain TCLRM

Time 1.4698 0.6329 19.8516 0.3962 192.7007

Baseline SpacCNN MS-CSC J4RNet-E J4RNet-P Proposed

Time 9.5075 15.7957 0.8401 0.8414 0.8974

0.12 in SSIM.

Subjective Evaluation We also compare visual results of

different deraining methods in Figs. 6 and 7. From the top

panel of Fig. 6, the results on synthesized data show our sig-

nificant superiority in rain streak removal and detail preser-

vation. The bottom panel of Fig. 6 demonstrates our advan-

tages in removing rain streak, accumulation, accumulation

flow, and even their combinations. Our method also per-

forms better than other methods on real images (Fig. 7). The

results in the top panel show that our method successful-

ly removes all sharp streaks, weak streaks and veil streaks,

while the results of other methods still display residual rain

to some extent. The results in the bottom panel demonstrate

our superiority of removing rain streak, rain accumulation

and accumulation flow. Our method removes all streaks,

generates the sharp boundaries between trees and sky, and

better keeps regionally consistent.

Running Time. Table 3 compares the running time of sev-

eral state-of-the-art methods. J4RNet-E, J4RNet-P and the

proposed methods are implemented in Python and based

on Pytorch4. Other methods are implemented in MAT-

LAB. DetailNet and SpacCNN are based on MatConvNet5.

JORDER is implemented on the Caffes Matlab wrapper6.

TCLRM is a CPU-based method and others are GPU-based

approaches. The video resolution for testing is 832 × 512.

In general, the running time of our method is comparable to

other state-of-the-art methods.

Ablation Study of Network Architecture We evaluate our

methods with different components in Table 4 and Fig. 8.

It is clearly observed from Table 4 that SF-DerainNet and

LSTM memory among frames significantly improve the ob-

jective results (v1 vs. v4 and v2 vs. v4). The inverse recov-

ery module benefits rain streak removal, which leads to a

higher SSIM (v3 vs. v4). MF-Alignment further improves

PSNR and SSIM (v4 vs. v5). From the visual results in

Fig. 8, the absence of SF-DerainNet (v1) leads to obvious

detail loss. Though v4 may achieve very high PSNR in Ta-

ble 4 without the inverse recovery module, it fails to remove

rain streak and capture the intensity distribution. Compara-

tively, our full version achieves the best visual quality.

Visual Results with and without Dual-Level Flow Con-

straints We also compare the visual results generated by

the models with and without dual flow constraints in Fig. 9,

which are used to facilitate generating more temporally con-

sistent and visually authentic results. Two very hard cases

4https://pytorch.org/
5http://www.vlfeat.org/matconvnet/
6http://caffe.berkeleyvision.org/

Table 4. Ablation analysis for network architecture. Best results

are denoted in red and the second best results are denoted in blue.
Baseline v1 v2 v3 v4 v5

SF-DerainNet × X X X X

Inverse Recovery X X × X X

LSTM Memory X × X X X

MF-Alignment × × × × X

PSNR 21.70 22.87 26.11 25.89 26.10

SSIM 0.8120 0.8183 0.8683 0.9043 0.9125

Figure 8. Example results of different methods on RainSynAll100.

Crop results from left to right: ground truth, v1, v2, v3, v4, and v5.

Figure 9. Two examples of successive frame results generated by

our methods with and without dual flow constraints on RainSynAl-

l100. (a) Input frames. (b) Results without dual flow constraints.

(c) Results with dual flow constraints.

with large sky regions, which are easily regarded as the ac-

cumulation or accumulation flow are investigated. From the

results, it is clearly observed that, without dual flow con-

straints, our results include less artifacts, and are more re-

gionally consistent and temporally smooth between frames.

6. Conclusion

In this paper, we address the problem of rain removal

from videos in a more comprehensive way. The degradation

factors of rain streak, accumulation, accumulation flow and

occlusion, are considered and a two-stage recurrent network

with dual flow constraints is constructed. This two-stage re-

current network extracts more reliable motion information

progressively. Rain-related variables (e.g. rain streak, at-

mospheric transmission) are estimated to infer the rain-free

frame by the inverse process of the rain synthesis model.

Furthermore, two types of flow-based orthogonal represen-

tations are proposed to make the network better capture mo-

tion patterns and keep inter-frame consistency. Extensive

experiments have verified the superiority of our method and

the effectiveness of each component.
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